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ON THE FORM OF THE PLASTICITY FUNCTIONAL IN 
ENDOCHRONIC INELASTICITY THEORIES* 

O.YU. DINARIYEV and A.B. MOSOLOV 

Different modifications of the selection of the plasticity 
function are considered for plasticity theories of endochronic type, 
without using the yield surface concept. 

Classical plasticity theories (the flow theory type) based on the 
yield surface concept do not satifactorily describe complex loading 
experiments. Consequently, a number of authors attempted to omit using 
the yield surface concept and the unloading conditions when constructing 
the governing relationships of plasticity theory. Apparently, the best 
known representatives of this class of theories are the endochronic 
theory of inelasticity (Valanis) and the tensor-parametric theory of 
plasticity (Kadashevich et al.). However, interest in plasticity 
theories that do not utilize the yield surface concept arose much earlier. 
The formulation of a theory in which there was actually no need to use 
the yield surface when constructing the governing relationships /l-3/ 
was even contained in researches of A.A. Il'yushin proposing general 
principles for constructing a phenomenological theory of plasticity 
under complex loading conditions. 

Let the relation between the stress vector a and the strain vector e be given for 
initially isotropic materials in the form of a single-valued 0 (5)-invariant functional 
satisfying the retardation property (damped memory) 

u = F Is, e (.)lo’, ds = 1 de ) (1) 

A specific form of the functional (1) was proposed, the sourcewise representation 

CT = fB (s, s’, {fi]) de(s’) 
0 

where {p} is a set of parameters reflecting the influence of the complex geometry of the 
deformation process. It was proposed to take the set of curvatures and torsions of the stra 
trajectory {p} = {x (s>, x (s')) as such parameters and if necessary their derivatives with 
respect to the arclength s as well. Certainly, in such a selection of the parameters {p} 
the kernel % must be predetermined at points of singularity {x), i.e., at corner points of 
the deformation trajectory /l/. 

As is seen, there is no need to use the yield surface concept in either (1) or (2). 
Another example of the theory where the yield surface can also not be utilized is the 

theory of plasticity based on the hypothesis of local definiteness 14, 5/. Indeed, if the 
equations of the local definiteness hypothesis are supplemented by an equation describing 
the evolution of the stress intensity o,, = Iu 1 (omitting the condition o, = d)(s) /5/J 

in 

ddds = I (s, ou, {W) (3) 

where 10,) are the angles of orientation of the vector e at the accompanying Frenet point 
of the deformation trajectory, then we obtain a plasticity theory that takes account of the 
complexity of the deformation process but does not utilize the yield surface or the unloading 
condition. 

A plasticity theory has been proposed in which the functional was selected in the form 
/6/ 

250 



251 

(I = s I (2 - 2’) de (2’) (4) 
0 

which is formally analogous to the linear viscoelasticity functional except that it was 
proposed to use the singular "internal" time s, generally a function of the deformation 
process, as the parameter of the process rather than the linear physical time t (hence, the 
theory is called endochronic i.e., with internal time). 

The measure of the internal time z was initially defined by the relationship 

dz = f * (s) ds, ds = 1 de 1 :5) 

The function f(s) corresponds to effects of the isotropic hardening type, and was con- 
sequently called the hardening function. By analogy with the standard rheological models 
of linear viscoelasticity, the kernel J was selected in a form corresponding to the 
generalized Maxwell model 

1 (z) = 5 2G,eeaiz 
i=1 

(6) 

Despite its apparent simplicity, the endochronic plasticity theory (EPT) enabled a 
number of important features of the elastic-plastic deformation of materials to be described 
at a qualitative and sometimes even at a quantitative level from a single viewpoint, for 
example, linear and non-linear hardening (and softening), the retardation phenomenon, 
non-linear unloading, hysteresis, hysteresis loop stabilization under cyclic loading, the 
"plunge" of o,, at the break in the deformation trajectory, etc. 16-01. Meanwhile, it was 
clarified that the EPT also possesses certain extraordinary properties. For example, if 
violates the Il'yushin-Drucker postulate /9/. This results in effects of the cyclic-creep 
and cyclic-relaxation type. Moreover, a serious quantitative discrepancy between 
experimental and theoretical data was often observed when comparing the predictions of the 
theory (4)-(6) with the results of experiments on complex loading. These facts became the 
basis for a serious criticism of the initial EPT modification /9-141. 

It is easy to comprehend the reason for the discrepancy between EPT predictions and 
test data by examining the form of the functional (4)-(6) more carefully. 

It is quite obvious that the EPT functional is an "oversimplified" modification of the 
source-wise representation of the vector a (2) in which the dependence of the kernel on the 
geometry of the deformation trajectory is omitted, and the arclength s is used as the par- 
ameter of the process as before. This results in the deformation increment de, 
corresponding to both active loading We > 0) and passing loading (ade < 0), making 
an essentially identical contribution to (41 and (5) that certainly cannot be valid in 
plasticity theory in the general case. 

Note that such a contradiction does not occur in the source-wise representation since 
the geometry of the deformation process is taken into account in the selection of the kernel 
B. 

The remark made in /lQ/ that three are actually insufficient foundations for the 
selection of the kernel J in the form (6) and, even more, that the form of.the hardening 
function f and the values of the parameters G,,a( is not determined successfully in an 
independent manner (and with sufficient accuracy) from experiments, can also be appended to 
the above. 

To what extent the EPT function is "oversimplified" as compared with the exact 
functional (1) can be understood by examining the expansion (approximation) of the 
functional (1) in the Frechet-Volterra functional-power series /15/ 

a= ~S.I.SI~k_ld~(de,.de,)...(de,k_,.~-,) 
k=l II 

It can be shown that the series is reduced to the form 

a = i K (s, E) de (5) 
0 

(‘1 

(8) 

up to processes with mean curvature inclusive for expansion in the small parameter, 
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9 = lx IAh is the curvature of the deformation process and hlis the retardation trace). 
Taking account of the next order of complexity (in the parameter q) of the 

deformation trajectory results in a functional of the form 

etc. Therefore, strictly speaking, the functional of the initial EPT modification is exact 
only for deformation trajectories no more complex than a trajectory with mean curvature and 
it must be considered as approximate for more complex trajectories. This explains the 
quantitative discrepancy observed between the predictions of this EPT modification and test 
data. 

The disadvantages of the functional of the initial EPT modification can perhaps be 
eliminated in a different manner. Writing the EPT functional in the form (81, it is 
possible to avoid the representation of the kernel J by the sum (6) and to define J instead 
from experiments in complex loading on trajectories in the form of a two-branched broken 
line. It is also possible to replace the simplest functional (4), (8) by the more complex 
functional (9). The "accuracy" domain of this functional is substantially wider but two 
kernels K, and KS, where the latter depends on four arguments in the general case, must 
already be constructed from experimental data for its definition. Construction of the 
kernels K, and K, is simplified somewhat if the body material does not age with respect 
to s, in which case it can be considered that 

K, (s, E) = K, (s - %), Ks (s, %u Se, Es) = KS (s - %I, s - Ez, s - Es) 

Althoughthe kernels K, and KS can, in principle, be constructed from data of complex 
loading experiments with deformation trajectories in the form of multiple-section broken 
lines, this is a quite complex experimental problem. 

The question of the selection of the plasticity functional is solved differently in 
116, 17/ where a parametric representation is proposed of the functional of the relationship 
between (I and e 

e=jL,(p,p’)dR(p’), dp=fl(R)dR, dR=jdR( 
cl 

A characteristic feature of such a form of the plasticity functional is that the 
relation between the vectors u and e is not sought directly but in terms of an auxiliary 
vector R whose form is not stipulated in advance but it is considered that it reflects 
the influence of the migrostrains and microstresses on the plasticity process. Although 
the analytic form of the tensor-parametric theory (10) is considerably more complex than 
the EPT, the presence of two kernels L, and L, in place of just the one J considerably 
expands the possibilities of the theory and enables a wider class of material properties to 
be described. 

Valanis chose a completely different means of revising the initial EPT modification. 
Instead of changing the form of the functional he proposed changing the definition of the 
internal time measure by introducing a "new" measure /18-20/ 

dz = f’ (E) d%, d% = 1 de - XE-‘da ) (11) 

Here E is the shear modulus and x E 10, ?I is an additional parameter of the model. 
The same measure was implicitly used earlier in /21/*. (*Complex loading processes in 

EPT with a new internal time measure were examined in the paper by Mosolov A.B., "On 
plasticity theory relationships taking account of deformation process complexity", Moscow 
State University, 1980. Deposited with VINITI, 2995, July 19, 1980, where a more general 
form of the new measure was proposed to take account of the dependence of x on the history 
of the strain process.). 

In order to understand what replacement of the measure (5) by (11) leads to, we consider 
the simplest EPT model when J (z) = Eexp (-a~). In this case (4) and (11) can be rewritten 
in the form of trinomial plasticity theory relationships 

do = Ede - aadz (12) 

Curves of the dependence of o on E are presented in Fig.1 for loading and subsequent 
unloading in the one-dimensional case corresponding to model (12). The parameters E and a 
remained constant /(%) = 1 + p%, the parameter x took the values 0, 0.5, 0.95 for the 
curves 1, 2, 3, respectively. As follows from the graphs presented, the model under 
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consideration corresponds to a material with linear hardening of the isotropic type. 
The quantity dz can be represented in the form 

ds = 9 (&rou, 6) 4 (13) 

where 0 is the angle between the vectors a .and de. Furthermore, for simplicity, only 
two-dimensional loading and deformation processes will be examined. 

Equations describing the evolution of u, and 6 

da,l& = EcosO - aw = % & ou, 0) 

d0M.s = --x - En,-'sin 9 = --x - lpz (&, a,,, 9) 

can be obtained from (12). 
These equations are actually identical with the equations of the theory based on the 

Lenskii local definiteness hypothesis with the difference, however, that UU is not considered 
to be a universal function of S. In particular, a plunge of o, occurs at a corner in the 
deformation trajectory. Drop profiles are shown in the inset to Fig.1 for deformation 
along a two-section broken line with a corner angle 90' marked by the open circle, the 
material parameters are as before and the trajectory corner occurs at the point A marked 
with the open circle As =s--A, where SA is the value of S at the time of the break. It 
is seen quite well that the depth of the drop depends on the magnitude of the parameter X 
where the drop vanishes as x+1. 

A comparison between the predictions of model (12) (the dashed line) and the experimental 
data (the solid line) is shown in Fig.2 for SlOC steel /22/. The deformation trajectory 
had the form of a two-section broken line with a corner angle of 90* TJ = aUcOsO, V = a, sin 

0, x = 0.65. Computations according to the initial EPT modification (X = 0) are shown by 
the dash-dot curve. 

Fig.1 Fig.2 

The introduction of the new measure (12) turned out to be useful and permitted a 
significant extension of the predictive possibilities of the EPT. However, it should be 
noted that the parameter x received no physical interpretation and remained essentially 
a formal parameter (adjustment) of the theory. Moreover, Valanis and his followers /23-25/ 
took the strict equality x = 1, i.e., dB = dspl, 
the plastic arclength (the Odqvist parameter). 

in later publications, where aa is 
The yield surface concept occurs in a 

natural manner for such a definition of the internal time parameter z, and the plasticity 
functional is written in the form /23/ 

u = cfo de&z f f I, (z - z’) de, (2’) 
0 

de*=&- E ‘da, dz = f'(E)@., dg = 1 dep 1 
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where u. is the yield point, while J, is a non-singular kernel, or in the form /24/ 

- z’) de, (z’), I (z) = z-Jo (z), a < 1 

Therefore, the modern EPT realization that Valanis proposed returns it to the class 
of plasticity theories with a yield surface although, possibly, not with an unassociated flow 
law 126, 2?/. This can hardly be considered a sequential development of the thoery which 
wasinitially of interestprecisely in that there was no yield surface in it. The latter 
assertion is ordinarily stressed especially in research devoted to EPT and, consequently, 
needs a certain refinement. 

Indeed, there is not need to use the unloading condition and the yield surface concept 
in constructing governing relationships in EPT (there is simply no such surface in a strict 
sense for x# 1) and the plasticity functional is given by (4) and (11) (or (101) for all 
possible deformation trajectories (including even trajectories corresponding to unloading). 
However, to interpret experimental data and to compare them with other plasticity theory 
modifications (with flow theories, say), it will often be convenient to introduce the 
conditional yield surface (CYS) concept into EPT. It is pertinent to recall here that the 
yield surface is defined in experimental investigations with a certain tolerance on whose 
magnitude the dimensions, shape and location of the yield surface in stress space can depend 
considerably. Most often a tolerance in the magnitude of the residual deformations (usually 
O.Ol-0.2%) is chosen. 

It is possible to proceed analogously in the EPT, except we shall give the tolerance in 
the magnitude of the relative plastic deformation increment. This simplifies the 
calculations significantly in the plasticity theory modification under consideration and 
corresponds more to the substance of the situation. For clarity, we shall limit ourselves 
first to the simplest EPT model (12). 

We introduce the following definition. Let O<S,< 1 be a certain small number 
(tolerance). We call a quasi-elastic deformation in the tolerance 6 a deformation process 
such that 

1 de,lds I < S, de,, = de - Pda, ak = I de I (14) 

The domain of stress space at each of whose points condition (14) holds for any 
deformation process will be called the,quasi-elastic deformation domain I&. We call Sa the 
closure boundary of Qb for a CYS in the tolerance 6. 

Let us construct Se for the model given by (2), from which it follows that 

de, = c&-r If (N-r I xde, + (1 - x) de I u (15) 

We use the notation 

ode 

Squaring both sides of (151, we obtain a quadratic equation in y whose root is 

(the second root is discarded as extraneous). Eq. (14) acquires the form y(6)< 6. By the 
definition of S&, this inequality should be valid at any point of Q6 irrespective of the 
value of 8. Consequently Pa is actually defined by the inequality maxe y(0) = y(O)<6 or 

I/(~)~(~-x)(PQ"/(~-x(Puu)<6 

We hence find 

o. < ob (8 = 6 (1 - x + 6x)-’ Ea-‘f (E) (1’3 

The inequality (16) means that Qb coincides with an open sphere of radius a~(%) with 
centre at the origin in stress space, and in this case the CYS is a sphere of radius 
oa (8. 

It follows from (16) that the CYS can change during deformation by expanding iso- 
tropically or being reduced in conformity with the behaviour of the function f (5). This 
indeed explains the designation of the function f as the hardening (softening) function. 
Therefore, model (13) corresponds to material with isotropic hardening (dfld%>O) or softening 

(@I&? < 0). In the simplest case j(E) E 1 relationship (14) describes material without 



hardening with the ultimate value 
It follows from (16) that if 

co (E) = od (8 can be called the 
therein, meaning that the plastic 
the tolerance 6. 
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of the stress o0 = Ea-I. 
x#i, then a&<~,. The spherical layer 06(t) <a,< 

plasticity layer since condition (14) is generally violated 
deformation increment can become "noticeable", i.e., exceed 

Unlike classical plasticity theories (of the flow-theory type), the loading point in 
the EPT can lie in a plasticity layer outside the CYS. This brings the EPT close to the 
class of two-surface plasticity theories f28, 29/, where the outer boundary of'the plasticity 
layer, the surface 0, = oO(E) in the EPT is analogous to the limit surface (loading surface) 
in two-surface plasticity theories, and the surface (I, = aa (CYS) corresponds to the 
yield surface. 

As follows from (16) and the definition of o0 (8, the change in the size of the limit 
surface is determined by the hardening function, and the size of the CYS depends very much 
on the magnitude of the parameter x also. It is assumed in the majority of research on 
EPT that x is a constant parameter, but it can be shown that, taking account of the 
dependence of x on the history of the deformation (loading) process, in the form X=x(&), 

say, we can take account of the regularities of the elastic-plastic deformation more 
correctly and reach better agreement with experimental results. 

Curves of the dependence of a on e during unloading (for a one-dimensional process), 
computed by means of (12) for f = 1, are represented in Fig.3 in a/o,, ele,(e, = o,lE) 
coordinates. The dashed curves correspond to the constant value x = 0.9, the solid lines 
are the results of a computation under the simplest assumptions x = 1 - fie,,-l& BE;’ N 0.16; 
and the points correspond to experimental data for Sl5C steel /30/. 

Taking account of the dependence of X on the history of the loading process, the CYS 
deformation and the limit surface can be considered independently. 

Within the framework of the EPT it is possible to go from model (13) with isotropic 
hardening to models with translational hardening (in the CYS sense). This is achieved 
by replacing the kernel J-+p$J. where u is the hardening modulus or by replacing in 

(2): u+o--e (analogously ri -+ a - pe,). It can be verified that in this case the 
inequality (15) takes the form I 0 - v I < 63 (EL This means that as before the CYS will be 
a sphere of radius WI(~), but now its centre shifts to the point Pe, as it should under 
translational hardening. The limit surface will similarly be determined by the equality 

I a - pe I = o. Cd, and consequently the centre of the whole plasticity layer shifts to the 
point pe. 

Fig.3 Fig.4 

The governing equation ,of'the simplest EPT model with linear tanslational-type hardening 
(the kernel of the functional (4) is taken in the form J(z) F p + E exp(-aa), a = E/a,) can 
be writtten as follows 

da = (E + p) de - a (u - pe) d& (17) 

where u has the meaning of a hardening modulus while u, is the yield point. 
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The behaviour of the material described by model (17) under uniaxial loading and 
subsequent unloading is shown in Fig.4. 

The model parameters E,a, and u are constants and correspond to the parameters of an 
EPT model with linear isotropic-type hardening whose behaviour is shown in Fig.1. As 
before, the parameter x took the values 0, 0.5, 0.95 for curves I, 2, 3, respectively 
and e = eElo,. 

A comparison of the predictions of model (17) (the dashed lines) with the results of 
experiments (solid lines) in the complex loading of steel 45 /IO/ is shown in Fig.5. The 
deformation trajectories in the tests were two-section broken lines with corner angle 
e. = 90” for so_ = 2.16% (for Fig.5a) and B. = 23,46,90" (for Fig.5b), U = a,cos6, V = 
(I, sin 6, x = 0.9. Curves computed on the basis of an EPT model with linear isotropic-type 
hardening are shown by the dash-dot lines in Fig.5a for comparison. 

Ailowing a dependence of IJ on t or considering functionals with more complex kernels, 
non-linear effects can be taken into account during translational-type hardening. 

Numerous experiments show that the yield surface constructed according to a given 
tolerance can only be displaced in stress space during deformation by isotropically altering 
its size, but can also change shape noticeably. The transverse dimensions of the yield 
surface often remain unchanged, i.e., there is no "transverse" Bauschinger effect (the 
Phillips rule) /31, 32/. However, it should be kept in mind that the Phillips rule is not 
always satisfied /33/. 

The above-mentioned deformation features of the yield surface can be taken into account 
within the EPT framework by changing the governing relationships somewhat. We again examine 
model (12) and for simplicity we limit ourselves to loading processes in one plane 2%. 

Let 0 be the origin in &,and m, and m2 orthogonal unit vectors of the basis. We 
change to polar coordinates with centre at 0. Then the location of any point on the loading 
trajectory will be determined by the stress intensity o, and the polar angle 0, measured 
from the direction m,, say. We shall assume that the deformation anisotropy occurring in 
a specimen during deformation can be described by the hardening function f and the parameter 
X selected in the form 

Here ce (8 is a parameter ensuring the dependence of f and X on the history of the 
loading (deformation) process. We define it as follows 

Le(%) = \FP(%. E’? cos ye (E’)) d%‘, 
A 

cos ye (E’) = qgg 

(me is a unit vector such that mime = COST). Sometimes it is more convenient to use 
another definition 

59 (E) = (I% (Ev E’, cm 4% (E’)) d%‘, cos 4% = 
me de (5’) 
___ ( de (E’) j 

” 
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The specific form of the function f, X, fi, pr is determined by the material properties. 
As before, the CYS motion in stress space can be taken into account by the substitution 
~+a- pe. 

Let us consider a simple example. Let the material be described by the equations 

da, = Ede - a If (&)l-‘oldL aI = a - pe 

dl;e = cp @as $9 (E))d6 H8) 
q~ (z) = -k_zh (-2) + k+zh (4, 0 < k, < k- 
f (t) = 1 - p (i - c?-T, p < 1 

where h(z) is the Heaviside function, and we will consider the parameters a, 8, A, E, ~9 x> k* 
to be constants, where S,h>O. Let the deformation trajectory be a two-section broken line 
with corner angle B0 for S=Q (or for E = E& We will measure the angle 8 from the 
direction of the first section. Then for s < $0 we have COS$~ = ~08 9, b = cp (COS e)E, while for 
s > 50 we have, respectively 5a = cp (~0s 8)&, + cp (co8 (e - 0,)) (E - &,). To be specific, let 8,=n/2, 
x == 0.95. 

The initial yield surface (curve 1) and the CYS sequence for the loading points B, C, D, 
E are shown by solid lines in the lower right side of Fig.6. The dash-dot line denotes the 
leading trajectory, the dashed circles are superposed for comparison and corresond to taking 
account of just the purely translational hardening. The model parameters are selected as 
follows 

fi = 0.8; k+b = 1O-S; k-/k+ = 15; E/a, = i, p/E = 0.1; 6 = 0.2 

A curve of the dependence of a on e for simple loading is presented in the left upper 
part of Fig.6 for the material mentioned e, = a,lE. 

The initial yield surface 1 and three successive yield surfaces 2, 3, 4, constructed 
after preliminary tension of a thin-walled tubular specimen fabricated from technically 
pure aluminium mark 1100-O to stresses of 46.5, 52.6 and 63.6 MPa, respectively /32/, are 
shown by the solid lines in Fig.7. The CYS corresponding to the model (18) are denoted by 
dashed lines. It is assumed here that ~e=~k~ao~-1cos9t (the plus sign refers to the case 
eose>o, and the minus to the case cos8<0), z= a,,-'Aa. Au= az- aO, where k+?+--'a, N 4.5 .iOeS, 

k_hp-'a0 N 2.38.10~*, x = 0.95, j? N 0.84. Only the upper halves of the appropriate curves (for z > 0) 
are shown in Fig.7 since the lower halves (for z<O) are arranged symmetrically about the 
az axis. 

Graphs of y+=f(SJ and y_=f(&) as a function of x are presented in Fig.8 (the upper 
and lower curve, respectively), the points with the plus and minus signs inside correspond 
to the experimental data represented in Fig.7. 

It is seen from Figs.6 and 7 that the model under consideration satisfies the Phillips 
rule. Special value should not be attached to the appearance of angular points on the CYS 
(although certain recent experimental results /34/ possibly favour this) since they are 
related to the selection of hardening laws in the form (18). The CYS deformation law can 
be selected so that its smoothness during the deformation process will be conserved. Another 
approach to the determination of the internal time measure was noted in /ll, 35, 36/*. (*See 
also the previous footnote.) 

By selecting the increment EPT mode, Ba'iant /ll/ described the plasticity functional 
in the form 

u = F&e + F&z, dz = F,ds 
where F,, F2, F, are functions of (I, e, 2. A quite complex specification of these func- 
tions, dependent on a large number of parameters 135, 36/, was proposed for mountain rocks 
and concrete. This would permit better agreement to be obtained between the experimental 
and computational data for different loading modes, however, determination of the 
parameters in F,,Fz and F, from experimental data is quite difficult. 

By generalizing the modifications presented above for the selection of z it can be 
considered that the internal time measure should be selected so that the nature (active and 
passive) of the deformation processes are correctly taken into account. Consequently, we set 
& = cp (s, (81) & where (8) is the set of parameters ensuring that the "complexity" of the 
deformation processes is taken into account. The form of the function cp and the parameters 
{8) requires additional investigation but keeping the relationship (13) in mind, the 
generalized local definiteness hypothesis can be used ae a simple and sufficiently general 
assumption and it can be considered that {fi} = {u,(s),~(s)}, that is 

dz = 'p (s, u,, e) as (18) 

It is natural to assume that 'p is an even decreasing function of 8, O<cp <I. 
Taking into account that for almost simple processes the arclength s is a completely adequate 
parameter at the history, it can be considered that cp also satisfies the condition tp (s, 0 (s), 
0) = 1, where m(s) is the hardening function under simple loading. 

We present an example of utilizing the models (4) and (19) to describe complex loading 
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experiments. Results of test on biaxial deformation of brass are represented in Fig.9 (the 
open circles correspond to values of 0 ,,, and the crosses and dark points to values of 
and a*) /37/. The deformation trajectory was a three-section S-shaped broken line with':ound- 
offs of radius R = 0.09% at the break points (Fig.10). 
is to be described by the equation 

The non-linear hardening of brass 

CD (s) = 106.7 + 51.31/T(MPa),s>0.5% 

We use the models (4) and (19) to describe the experiments for 

_A( “-jt COP $ 
J (2) = E exp (-(x2), cp (s, a”’ 0) = a@ (s) al (s) 

where k 7 3, v = i,s > so = 1.5% and E has the meaning of the elastic modulus. 
curves are shown in Fig.9 by solid lines. 

The computed 

Fig.6 

Fig.7 

3 0 / 2 AS,% 

Fig.8 Fig.9 Fig.10 

The parameters I@) can be determined analogously even in source-wise plasticity theory 
(SPT) (2); then the SPT functional is written in the form 

u=jB(s, s’, a,(s), u,(s’), e(s’))de(s’) 
0 

(20) 

Comparing (4), (19) and (2U), the "duality" of these relationships can be noted. They 
differ only in that the geometry of the deformation processes in EPT is taken into account 
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in determining the internal time parameter, while it is in the selection of the kernel B in 
the SPT. 

It is sometimes assumed that a particular local definiteness property is valid, according 
to which: if after an arbitrary loading process a break in the deformation trajectory 
is realized at a certain time s =sO so that the direction of the vector PO = dell-l% (90 + 0) 
coincides with the direction of the vector o(so - 0) and then deformation along a line. 
determined by the vector #p. 'is continued, then the ve-ctor u remains parallel to p. /30/. 
In this case it can be shown that the kernel of the EpT and SPT functionals are factorlsed, 
i.e., can be represented in the form of the products 

J (5 z’) = J, (4 Jz (z’) 
B (s, s’, (J, (4, uu (0, e (0 = 4 (St % (4) & b’, %& (s’), 
0 (SO) 

Because of this the EPT and SPT functionals can be rewritten in the form of a tri- 
nomial plasticity relationship /3, 39/ 

do =N&- Mads 
or in the form of equations of the generalized local definiteness hypothesis 

+= Ncose - Ma,, _!i&_-$ sin 0 
u 

where N and M can be functions of 2, s, c, and 0. 
Despite the explicit similarity of the representations of the EPT and SPT functionals, 

the predictions of their theories can be distinct in a number of cases. The fact is that 
N = N (z) in the EPT while N = N(s,o,,e) in the SPT. Consequently, a continuous change 
in N is predicted for a corner in the deformation trajectory which is in agreement with 
assumptions expressed earlier about the behaviour of this functional /l, 2, 39/. The 
situation is different in the SPT since a dependence of N on 8 is allowed in this modification 
of the theory, and therefore N can change by a jump at a corner in the deformation trajectory. 
There are experimental indications that this corresponds more to reality /4Q/, although a 
fairly good approximation for applied computations is ordinarily the assumption according 
to which N changes weakly during deformation. 
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